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Abstract. Generating accurate three dimensional planetary models is
becoming increasingly important as NASA plans manned missions to re-
turn to the Moon in the next decade. This paper describes a 3D surface
reconstruction system called the Ames Stereo Pipeline that is designed to
produce such models automatically by processing orbital stereo imagery.
We discuss two important core aspects of this system: (1) refinement of
satellite station positions and pose estimates through least squares bun-
dle adjustment; and (2) a stochastic plane fitting algorithm that general-
izes the Lucas-Kanade method for optimal matching between stereo pair
images.. These techniques allow us to automatically produce seamless,
highly accurate digital elevation models from multiple stereo image pairs
while significantly reducing the influence of image noise. Our technique
is demonstrated on a set of 71 high resolution scanned images from the
Apollo 15 mission.

1 Introduction

Accurate, high resolution Lunar 3D maps will play a central role in NASA’s
future manned and unmanned missions to the moon. These maps support land-
ing site selection and analysis, lunar landing simulation & training efforts, and
computer assisted landing systems. Furthermore, 3D digital elevation models
(DEMSs) provide valuable information to scientists and geologists studying lunar
morphology.

Several recent recent lunar satellite missions, including NASA’s Lunar Re-
connaissance Orbiter, have returned stereo pairs with unparalleled resolution
and image quality. However, historical data collected during the Apollo era still
provide some of the best lunar imagery available today [1]. In fact, the Apollo
Metric Camera system collected roughly 8,000 images covering roughly 20% of
the lunar equatorial zone at a resolution of 10-m/pixel (Figure 1). The exten-
sive coverage and relatively high resolution of this camera makes this data set
extremely relevant in modern lunar data processing.

In this paper, we introduce the Ames Stereo Pipeline, a C4++ software frame-
work for automated stereogrammetric processing of NASA imagery. We begin
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Fig. 1. Adjacent Apollo Metric Camera frames (e.g. AS15-M-1135 and AS15-M-1136
shown here) overlap by 80%. This combined with the relatively wide field of view of
the camera (74 degrees) results in ideal stereo angles between successive images.

with an overview of this stereo reconstruction framework in Section 2. Then, spe-
cific attention is given to two core components of the system: Section 3 describes
the bundle adjustment approach for correcting extrinsic camera parameters and
co-registering overlapping images; and Section 4 describes our sub-pixel accu-
rate stereo correlation technique. Finally, in Section 5 we present the results of
processing Apollo Metric Camera imagery.

2 The Ames Stereo Pipeline

The entire stereo correlation process, from raw input images to a point cloud or
DEM, can be viewed as a multistage pipeline as depicted in Figure 2.

The process begins with least squares Bundle Adjustment, which is described
in Section 3, below. This produces corrected extrinsic camera parameters that
are utilized by various camera modeling steps.

Then, the left and right images are aligned using interest points or geometric
constraints from the camera models. This step is often essential for performance
because it ensures that the disparity search space is bounded to a known area.
Next, a prepossessing filter such as the Sign of the Laplacian of the Gaussian filter
is used, which has the effect of producing images that are somewhat invariant
to differences in lighting conditions [2].

Following these pre-processing steps, we compute the disparity space image
DSI(i,j,dg,d,) that stores the matching cost between a left image block cen-
tered around pixel (7, j) and a right image block centered at position (i —d,,j —
d,). At this stage, the quality of the match is measured as the normalized cross
correlation [3] between two 15x15 pixel image patches. We employ several opti-
mizations to accelerate this computation: (1) a box filter-like accumulator that
reduces duplicate operations in the calculation of DST [4]; (2) a coarse-to-fine
pyramid based approach where disparities are estimated using low resolution
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Fig. 2. Flow of data through the Ames Stereo Pipeline

images, and then successively refined at higher resolutions; and (3) partitioning
of the disparity search space into rectangular sub-regions with similar values of
disparity determined in the previous lower resolution level of the pyramid [4].

The DST estimate just described efficiently computes integer estimates of
disparity between the two images. These estimates are subsequently refined to
sub-pixel accuracy using the technique described in Section 4. Finally, in con-
junction with the bundle adjusted camera models, the sub-pixel disparity esti-
mates are used to triangulate the location of 3D points as the closest point of
intersection of two forward-projected rays emanating from the centers of the two
cameras through the matched pixels.

3 Bundle Adjustment

The Apollo-era satellite tracking network was highly inaccurate by today’s stan-
dards with errors estimated to be 2.04-km for satellite station positions and
0.002 degrees for pose estimates in a typical Apollo 15 image [5]. Such errors
propagate through the stereo triangulation process, resulting in systematic po-
sition errors and distortions in the resulting DEMs (see Figure 3). These errors
can be corrected using least-squares bundle adjustment.

In bundle adjustment the position and orientation of the camera are deter-
mined jointly with the 3D position of a set of image tie-points points chosen in
the overlapping regions between consecutive images. Tie-points are automati-
cally extracted using the SURF robust feature extraction algorithm [6]. Outliers
are rejected using the RANSAC method and trimmed to 1000 matches that are
spread evenly across the images.

Our bundle adjustment approach follows the method described in [7] and
determines the best camera parameters that minimize the projection error given
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Fig. 3. Bundle adjustment is illustrated here using a color-mapped, hill-shaded DEM
mosaic from Apollo 15 Orbit 33 imagery. (a) Prior to bundle adjustment, large disconti-
nuities exist between overlapping DEMs. (b) After bundle adjustment, DEM alignment
errors are no longer visible.

by e =3>>Ik — I(Cj,X}))? where I, are feature locations on the image
plane, C; are the camera parameters, and X are the 3D positions associated
with features Iy,. I(C;, X;) is an image formation model (i.e. forward projection)
for a given camera and 3D point. The optimization of the cost function uses the
Levenberg-Marquartd algorithm. Speed is improved by using sparse methods
described in [8].

To eliminate the gauge freedom inherent in this problem, we add two addition
error metrics to this cost function to constrain the position and scale of the
overall solution. First, e = > j(C’;m““l — (})? constrains camera parameters
to stay relatively close to their initial values. Second, a small handful of 3D
ground control points are chosen by hand and added to the error metric as
€= 1 (XI? — X})? to constrain these points to known locations in the lunar
coordinate frame. In the cost functions discussed above, errors are weighted by
the inverse covariance of the measurement that gave rise to the constraint.

4 Sub-pixel Stereo Correlation

Apollo images are affected by two types of noise inherent to the scanning process:
(1) the presence of film grain and (2) dust & lint particles. The former gives
rise to noise in the DEM values that wash out real features, and the latter
causes incorrect matches or hard to detect blemishes in the DEM. Attenuating
the effect of these scanning artifacts while simultaneously refining the integer
disparity map to sub-pixel accuracy has become a critical goal of our system,
and is necessary for processing real-world data sets such as the Apollo Metric
Camera data.

A common technique in sub-pixel refinement is to fit a parabola to the cor-
relation cost surface in the 8-connected neighborhood around the integer dispar-
ity estimate, and then use the parabola’s minimum as the sub-pixel disparity
value. This method is easy to implement and fast to compute, but exhibits a
problem known as pixel-locking: the sub-pixel disparities tend toward their inte-
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ger estimates and can create noticable "stair steps” on surfaces that should be
smooth [9], [10]. One way of attenuating the pixel-locking effect is through the
use of a symmetric cost function [11] for matching the “left” and “right” image
blocks.

To avoid the high computational complexity of these methods another class
of approaches based on the Lucas-Kanade algorithm [12] proposes an asymmet-
ric score where the disparity map is computed using the best matching score
between the left image block and an optimally affine transformed block from the
right image. For example, the sub-pixel refinement developed by Stein et. al. [9]
lets Ir(m,n) and Iy, (%, j) be two corresponding pixels in the right and left image
respectively, where ¢ = m + d,, j = n+ d, and d,d, are the integer dispari-
ties. They develop a linear approximation based on the Taylor Series expansion
around pixel (i, 7) in the left image

Ioi 803+ 8,) ~ 1u(i.3) + 0,52, ) 4.8, 0, )
z Yy
where J, and J, are the local sub-pixel displacements. Let e(x,y) = Ir(z,y) —
I (i+ 05,5+ 6y) and W be an image window centered around pixel (m,n). The
local displacements are not constant accross W and they vary according to:

(5m(l,]) =ayl+ b1] +c
5y(i,j):a2i+b2j+c2. (2)

The goal is to find the parameters ai,b1,c1,as,bs,co that minimize the cost
function

E(mn)= Y (e(z,y)w(z,y))’ 3)

(z,y)eW

where w(x,y) are a set of weights used to reject outliers. Note that the local
displacements 6, (¢, ) and 6, (¢, j) depend on the pixel positions within the win-
dow W. In fact, the values aq, by, c1,aso,bs, co that minimize E can be seen as
the parameters of an affine transformation that best transforms the right image
window to match the reference (left) image window.

The shortcoming of this method is directly related to the cost function that it
is minimizing, which has a low tolerance to noise. Noise present in the image will
easily dominate the result of the squared error function, giving rise to erroneous
disparity information. Recently, several statistical approaches (e.g. [13]) have
emerged to show how stochastic models can be used to attenuate the effects
of noise. Our sub-pixel refinement technique [14] adopts some of these ideas,
generalizing the earlier work by Stein et. al. [9] to a Bayesian framework that
models both the data and image noise.

In our approach the probability of a pixel in the right image is given by the
following Bayesian model:

P(Ig(m,n)) = NUp(m, )| + 6y, § + 5,), —2
(Iglew Y Swy

+ N(IR(mvn)‘,unaan)P(z = 1)
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The first mixture component (z = 0) is a normal density function with mean
. . (o .
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The \/%Ty factor in the variance of this component has the effect of a Gaussian
smoothing window over the patch. With this term in place, we are no longer
looking for a single variance over the whole patch; instead we are assuming the
variance increases with distance away from the center according to the inverted
Gaussian, and are attempting to fit a global scale, o,. This provides formal
justification for the standard Gaussian windowing kernel.

The second mixture component (z = 1) in Equation 5 models the image noise
using a normal density function with mean p,, and variance o,:

P(Ir(m,n)|z = 0) = N(Ir(m,n) I (i + 6z, j + 3y), ) ()

P(Ir(m,n)|z = 1) = N(Ir(m,n)|n, on) (6)

Let Ir(m,n) be a vector of all pixels values in a window W centered in pixel
(m,n) in the right image. Then,

PAg(m,n)) = ] PUr(z,y) (7)
(z,y)EW

The parameters A = {a1, b1, ¢1, a2, ba, c2, 0p, fin, o } that maximize the model
likelihood in Equation 7 are determined using the Expectation Maximization
(EM) algorithm. Maximizing the model likelihood in Equation 7 is equivalent to
maximizing the auxiliary function:

= ZP(kHR?At) IOgP(IRak7é‘)\)
k

=3 " P(k|Ip(z,y), \) log P(Ig(z, )|k, \) P(k|\) (8)

k zy

Note that the M step calculations are similar to the equation used to deter-
mine the parameters aq, by, c1,as, ba, ca in the method presented in [9], except
here the fixed set of weights is replaced by the a posteriori probabilities computed
in the E step. In this way, our approach can be seen as a generalization of the
Lucas-Kanade method. The complete algorithm is summarized in the following
steps:

— Step 1: Compute @(z ), C”L (i,7) and the Ir(z,y) values using bilinear

interpolation. Initialize the model parameters \.

— Step 2: Compute iteratively the model parameters A using the EM algorithm
(see [14] for details).

— Step 3: Compute 0, (¢,7) and 6,(, j) using Equation 2.

— Step 4: Compute a new point (z’,y") = (x,y) + (05,9y) and the Ir(z',y’)
values using bilinear interpolation.
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(a)

Fig. 4. Hadley Rille and the Apollo 15 landing site derived from Apollo Metric Camera
frames AS15-M-1135 and AS15-M-1136. (a) superimposed over the USGS Clementine
base map, (b) oblique view.

— Step 5: If the norm of (d,,d,) vector falls below a fixed threshold the iter-
ations converged. Otherwise, go to step 1.

Like the computation of the integer DSI, we adopt a multi-scale approach
for sub-pixel refinement. At each level of the pyramid, the algorithm is initialized
with the disparity determined in the previous lower resolution level of the pyra-
mid. This allows the subpixel algorithm to shift the results of the integer DST
by many pixel if a better match can be found using the affine, noise-adapted
window.

5 Results

The 3D surface reconstruction system described in this paper was tested by
processing 71 Apollo Metric Camera images from Apollo 15. Specifically, we
chose frames from orbit 33 of the mission, which includes highly overlapping
images that span approximately 90 degrees of longitude in the lunar equatorial
region. This exercised our algorithms across a wide range of different terrain
and lighting conditions. Figure 4 shows the final results in the vicinity of Hadley
Rille: the Apollo 15 landing site.

Tests were carried out on a 2.8-GHz, 8-core workstation with 8-GB of RAM.
Stereo reconstruction for all 71 stereo pairs took 2.5 days. In the end, the results
were merged into a DEM at 40-m/pixel that contained 73,000 x 20,000 pixels.

5.1 Bundle Adjustment

Bundle adjustment was carried out as described in Section 3. Initial errors and
results after one round of adjustment are shown in columns two and three of
Table 1, respectively. Subsequently, any tie-point measurements with image-
plane residual errors that were greater than 2 standard deviations from the
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mean residual error were thrown out. Bundle adjustment was run a second time
yielding slightly improved results shown in column four of the table.

To constrain the scale and absolute position of the solution, 7 ground control
points were selected in a triangle wave pattern across the extent of the orbit to tie
specific image pixels to known positions in the lunar coordinate frame. The sigma
weights for ground control points were based on the resolution of the underlying
base map from which ground control points were derived. These were 300-m on
the surface and 500-m normal to the surface. Furthermore, the camera station
position and pose estimates were constrained to stay close to their initial values
based on radio tracking data. Sigma weights for camera parameters were 2-km
for position, and 0.01 radians for pose. These values were drawn from historical
estimates of Apollo tracking network accuracy as previously discussed.

Residual Reconstruction|| Initial |After Round 1|After Round 2
Image Plane 0.444-mm| 0.012-mm 0.0075-mm
Camera Position 0-km 1.31-km 1.31-km
Camera Orientation 0-mrad 9.0-rad 9.1-mrad
Ground Control Point 0-m 481-m 465-m
Triangulation Error 911-m 24.1-m 15.58-m

Table 1. Residual error at various stages of bundle adjustment. Residual error in the
image plane decreases as image tie-point constraints are satisfied. This improvement is
made possible as residual “error” for camera position, orientation and ground control
points increase to compensate. Triangulation is a measure of the average distance
between the closest point of intersection of two forward projected rays for a set of
tie-points. Its decrease indicates a substantial improvement in the self-consistency of
the DEMs in the data set.

5.2 Subpixel Correlation

Film grain and the dust particles are inherent to the scanning process and can
significantly limit the accuracy of the stereo processing system. One example
where dust particle noise occurs in one of the stereo pair images is shown in
detail in Figure 5 (a) and (b). Figure 5 (c¢) illustrates the integer disparity map
obtained by running the fast discrete correlation method described in Section 2.
Figure 5 (d), and (e) compares the horizontal sub-pixel disparity maps obtained
using the parabola method and the Lucas-Kanade method with the Bayesian
approach we introduced in Section 4. The Bayesian approach reduces the “stair-
stepping” artifacts apparent in the results from the parabola method. It also
demonstrates a degree of immunity to the noise introduced by the speck of dust
in (a).
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(d) (e)

Fig. 5. (a) Left Image (with a speck of dust), (b) Right Image, (c) Horizontal integer
disparity map, (d) Horizontal disparity map using the parabola method, (e¢) Horizontal
disparity map using the Bayesian approach.

6 Conclusions and future work

This paper has introduced a novel statistical formulation for optimally determin-
ing stereo correspondence with subpixel accuracy while simultaneously mitigat-
ing the effects of image noise. Furthermore, we have successfully demonstrated
a significant improvement to the geometric consistency of the results after us-
ing least squares bundle adjustment. These techniques were successfully used
to process a large, real-world corpus of images and were found to produce use-
ful results. However, this was a preliminary demonstration of these capabilities,
and much work remains to quantify residual errors and characterize the degree
of noise immunity in our new correlation algorithm. Further research will be
directed towards building a comprehensive error model for the 3D surface re-
construction process that can be used to systematically test our system under a
variety of different conditions and inputs. Ultimately, we hope to use our tech-
nique to process the full collection of over 8,000 Apollo Metric Camera stereo
pairs.
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